Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Neurol Sci ; 445: 120538, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2165604

ABSTRACT

OBJECTIVE: The primary objective was to determine the effect of the COVID-19 pandemic on volume, demographics, and mechanisms of injury (MOI) for patients seen at an urban multidisciplinary concussion center. During the first phase of the pandemic in the United States, stay-at-home orders led to decreased group activities and required cancellation of outpatient appointments or initiation of telemedicine visits. METHODS: This study was a retrospective chart review of 3500 patient electronic medical records (EMR). Patients aged 1-99 years were eligible if they had been seen at New York University Langone Health Concussion Center during March 1-December 31, 2019 (control/pre-pandemic period) or during the same period in 2020 (pandemic period). Injury date, appointment date, age, sex, and MOI were captured; statistical analyses were performed using Stata17 (StataCorp, College Station, TX). RESULTS: There were 48% fewer visits during the COVID-19 pandemic period compared to the 2019 control period. There was a decreased proportion of pediatric patients (15% control, 6% pandemic; p = 0.007, chi-square test). Fewer concussions were related to team sports (21% control, 5% pandemic; p < 0.001), and a greater proportion were caused by bicycle accidents (4% control, 8% pandemic; p = 0.037) and assault/domestic violence (3% control, 9% pandemic; p < 0.001). CONCLUSION: The relative proportions of concussion MOI, age distributions, and visit volumes were significantly associated with pre-pandemic vs. pandemic periods, suggesting that COVID-19 changed concussion epidemiology during the pandemic period. This study demonstrates how epidemiologic data may inform future resource allocation during public health emergencies.


Subject(s)
Athletic Injuries , Brain Concussion , COVID-19 , Humans , Child , United States , COVID-19/epidemiology , COVID-19/complications , Athletic Injuries/epidemiology , Pandemics , Retrospective Studies , Brain Concussion/etiology
2.
J Neurol Sci ; 443: 120487, 2022 Dec 15.
Article in English | MEDLINE | ID: covidwho-2095674

ABSTRACT

BACKGROUND: Limited data exists evaluating predictors of long-term outcomes after hospitalization for COVID-19. METHODS: We conducted a prospective, longitudinal cohort study of patients hospitalized for COVID-19. The following outcomes were collected at 6 and 12-months post-diagnosis: disability using the modified Rankin Scale (mRS), activities of daily living assessed with the Barthel Index, cognition assessed with the telephone Montreal Cognitive Assessment (t-MoCA), Neuro-QoL batteries for anxiety, depression, fatigue and sleep, and post-acute symptoms of COVID-19. Predictors of these outcomes, including demographics, pre-COVID-19 comorbidities, index COVID-19 hospitalization metrics, and life stressors, were evaluated using multivariable logistic regression. RESULTS: Of 790 COVID-19 patients who survived hospitalization, 451(57%) completed 6-month (N = 383) and/or 12-month (N = 242) follow-up, and 77/451 (17%) died between discharge and 12-month follow-up. Significant life stressors were reported in 121/239 (51%) at 12-months. In multivariable analyses, life stressors including financial insecurity, food insecurity, death of a close contact and new disability were the strongest independent predictors of worse mRS, Barthel Index, depression, fatigue, and sleep scores, and prolonged symptoms, with adjusted odds ratios ranging from 2.5 to 20.8. Other predictors of poor outcome included older age (associated with worse mRS, Barthel, t-MoCA, depression scores), baseline disability (associated with worse mRS, fatigue, Barthel scores), female sex (associated with worse Barthel, anxiety scores) and index COVID-19 severity (associated with worse Barthel index, prolonged symptoms). CONCLUSIONS: Life stressors contribute substantially to worse functional, cognitive and neuropsychiatric outcomes 12-months after COVID-19 hospitalization. Other predictors of poor outcome include older age, female sex, baseline disability and severity of index COVID-19.


Subject(s)
COVID-19 , Humans , Female , Activities of Daily Living , Prospective Studies , Quality of Life/psychology , Longitudinal Studies , Hospitalization , Fatigue/epidemiology , Fatigue/etiology
3.
PLoS One ; 17(9): e0275274, 2022.
Article in English | MEDLINE | ID: covidwho-2054370

ABSTRACT

BACKGROUND: Post-acute sequelae of COVID-19 (PASC) includes a heterogeneous group of patients with variable symptomatology, who may respond to different therapeutic interventions. Identifying phenotypes of PASC and therapeutic strategies for different subgroups would be a major step forward in management. METHODS: In a prospective cohort study of patients hospitalized with COVID-19, 12-month symptoms and quantitative outcome metrics were collected. Unsupervised hierarchical cluster analyses were performed to identify patients with: (1) similar symptoms lasting ≥4 weeks after acute SARS-CoV-2 infection, and (2) similar therapeutic interventions. Logistic regression analyses were used to evaluate the association of these symptom and therapy clusters with quantitative 12-month outcome metrics (modified Rankin Scale, Barthel Index, NIH NeuroQoL). RESULTS: Among 242 patients, 122 (50%) reported ≥1 PASC symptom (median 3, IQR 1-5) lasting a median of 12-months (range 1-15) post-COVID diagnosis. Cluster analysis generated three symptom groups: Cluster1 had few symptoms (most commonly headache); Cluster2 had many symptoms including high levels of anxiety and depression; and Cluster3 primarily included shortness of breath, headache and cognitive symptoms. Cluster1 received few therapeutic interventions (OR 2.6, 95% CI 1.1-5.9), Cluster2 received several interventions, including antidepressants, anti-anxiety medications and psychological therapy (OR 15.7, 95% CI 4.1-59.7) and Cluster3 primarily received physical and occupational therapy (OR 3.1, 95%CI 1.3-7.1). The most severely affected patients (Symptom Cluster 2) had higher rates of disability (worse modified Rankin scores), worse NeuroQoL measures of anxiety, depression, fatigue and sleep disorder, and a higher number of stressors (all P<0.05). 100% of those who received a treatment strategy that included psychiatric therapies reported symptom improvement, compared to 97% who received primarily physical/occupational therapy, and 83% who received few interventions (P = 0.042). CONCLUSIONS: We identified three clinically relevant PASC symptom-based phenotypes, which received different therapeutic interventions with varying response rates. These data may be helpful in tailoring individual treatment programs.


Subject(s)
COVID-19 , COVID-19/complications , COVID-19/therapy , Disease Progression , Humans , Phenotype , Prospective Studies , SARS-CoV-2
4.
Digital health ; 8, 2022.
Article in English | EuropePMC | ID: covidwho-1958210

ABSTRACT

Background Prior to the COVID-19 pandemic, about half of patients from populations that sought care in neurology tried complementary and integrative therapies (CITs). With the increased utilization of telehealth services, we sought to determine whether patients also increased their use of virtual CITs. Methods We examined datasets from two separate cross-sectional surveys that included cohorts of patients with neurological disorders. One was a dataset from a study that examined patient and provider experiences with teleneurology visits;the other was a study that assessed patients with a history of COVID-19 infection who presented for neurologic evaluation. We assessed and reported the use of virtual (and non-virtual) CITs using descriptive statistics, and determined whether there were clinical characteristics that predicted the use of CITs using logistic regression analyses. Findings Patients who postponed medical treatment for non-COVID-19-related problems during the pandemic were more likely to seek CITs. Virtual exercise, virtual psychotherapy, and relaxation/meditation smartphone applications were the most frequent types of virtual CITs chosen by patients. In both studies, age was a key demographic factor associated with mobile/virtual CIT usage. Interpretations Our investigation demonstrates that virtual CIT-related technologies were utilized in the treatment of neurologic conditions during the pandemic, particularly by those patients who deferred non-COVID-related care.

5.
Am J Ophthalmol Case Rep ; 26: 101549, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1800222

ABSTRACT

Purpose: Herpes zoster (HZ) has been identified as a potential association with the BNT162b2 COVID-19 vaccination. This study evaluated this possible association in a cohort of patients receiving the vaccination. Methods: Epic electronic health records of adult patients who received at least one COVID-19 vaccination between January 12, 2020 and 9/30/2021 within the NYU Langone Health were reviewed to analyze a new diagnosis of herpes zoster within 3 months before compared to 3 months after vaccination. Results: Of the 596,111 patients who received at least one COVID-19 vaccination, 716 patients were diagnosed with HZ within three months prior to vaccination, compared to 781 patients diagnosed within 3 months afterwards. Using the chi-square test for independence of proportions, there was not a statistically significant difference in frequency of HZ before (proportion: 0.0012, 95% CI: [0.0011, 0.0013]) vs. after vaccination (proportion: 0.0013, 95% CI: [0.0012, 0.0014]); (p = 0.093). Conclusions and importance: This study did not find evidence of an association between COVID-19 vaccination and a new diagnosis of HZ. We encourage health care professionals to strongly recommend COVID-19 vaccinations per Centers for Disease Control (CDC) recommendations and vaccination against HZ according to Food and Drug Administration (FDA) approval for the recombinant zoster vaccine.

6.
Neurology ; 99(1): e33-e45, 2022 07 05.
Article in English | MEDLINE | ID: covidwho-1753150

ABSTRACT

BACKGROUND AND OBJECTIVE: Little is known about trajectories of recovery 12 months after hospitalization for severe COVID-19. METHODS: We conducted a prospective, longitudinal cohort study of patients with and without neurologic complications during index hospitalization for COVID-19 from March 10, 2020, to May 20, 2020. Phone follow-up batteries were performed at 6 and 12 months after COVID-19 onset. The primary 12-month outcome was the modified Rankin Scale (mRS) score comparing patients with or without neurologic complications using multivariable ordinal analysis. Secondary outcomes included activities of daily living (Barthel Index), telephone Montreal Cognitive Assessment (t-MoCA), and Quality of Life in Neurologic Disorders (Neuro-QoL) batteries for anxiety, depression, fatigue, and sleep. Changes in outcome scores from 6 to 12 months were compared using nonparametric paired-samples sign test. RESULTS: Twelve-month follow-up was completed in 242 patients (median age 65 years, 64% male, 34% intubated during hospitalization) and 174 completed both 6- and 12-month follow-up. At 12 months, 197/227 (87%) had ≥1 abnormal metric: mRS >0 (75%), Barthel Index <100 (64%), t-MoCA ≤18 (50%), high anxiety (7%), depression (4%), fatigue (9%), or poor sleep (10%). Twelve-month mRS scores did not differ significantly among those with (n = 113) or without (n = 129) neurologic complications during hospitalization after adjusting for age, sex, race, pre-COVID-19 mRS, and intubation status (adjusted OR 1.4, 95% CI 0.8-2.5), although those with neurologic complications had higher fatigue scores (T score 47 vs 44; p = 0.037). Significant improvements in outcome trajectories from 6 to 12 months were observed in t-MoCA scores (56% improved, median difference 1 point; p = 0.002) and Neuro-QoL anxiety scores (45% improved; p = 0.003). Nonsignificant improvements occurred in fatigue, sleep, and depression scores in 48%, 48%, and 38% of patients, respectively. Barthel Index and mRS scores remained unchanged between 6 and 12 months in >50% of patients. DISCUSSION: At 12 months after hospitalization for severe COVID-19, 87% of patients had ongoing abnormalities in functional, cognitive, or Neuro-QoL metrics and abnormal cognition persisted in 50% of patients without a history of dementia/cognitive abnormality. Only fatigue severity differed significantly between patients with or without neurologic complications during index hospitalization. However, significant improvements in cognitive (t-MoCA) and anxiety (Neuro-QoL) scores occurred in 56% and 45% of patients, respectively, between 6 and 12 months. These results may not be generalizable to those with mild or moderate COVID-19.


Subject(s)
COVID-19 , Cognitive Dysfunction , Fatigue , Quality of Life , Activities of Daily Living , Aged , Anxiety/epidemiology , Anxiety/etiology , COVID-19/complications , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Depression/epidemiology , Depression/etiology , Fatigue/epidemiology , Fatigue/etiology , Female , Hospitalization , Humans , Longitudinal Studies , Male , Prospective Studies , Sleep Wake Disorders/epidemiology , Sleep Wake Disorders/etiology
7.
Alzheimers Dement ; 18(5): 899-910, 2022 05.
Article in English | MEDLINE | ID: covidwho-1620097

ABSTRACT

INTRODUCTION: Neurological complications among hospitalized COVID-19 patients may be associated with elevated neurodegenerative biomarkers. METHODS: Among hospitalized COVID-19 patients without a history of dementia (N = 251), we compared serum total tau (t-tau), phosphorylated tau-181 (p-tau181), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), ubiquitin carboxy-terminal hydrolase L1 (UCHL1), and amyloid beta (Aß40,42) between patients with or without encephalopathy, in-hospital death versus survival, and discharge home versus other dispositions. COVID-19 patient biomarker levels were also compared to non-COVID cognitively normal, mild cognitive impairment (MCI), and Alzheimer's disease (AD) dementia controls (N = 161). RESULTS: Admission t-tau, p-tau181, GFAP, and NfL were significantly elevated in patients with encephalopathy and in those who died in-hospital, while t-tau, GFAP, and NfL were significantly lower in those discharged home. These markers correlated with severity of COVID illness. NfL, GFAP, and UCHL1 were higher in COVID patients than in non-COVID controls with MCI or AD. DISCUSSION: Neurodegenerative biomarkers were elevated to levels observed in AD dementia and associated with encephalopathy and worse outcomes among hospitalized COVID-19 patients.


Subject(s)
Alzheimer Disease , COVID-19 , Cognitive Dysfunction , Amyloid beta-Peptides , Biomarkers , COVID-19/complications , Cognition , Hospital Mortality , Humans , tau Proteins
8.
J Neurol Sci ; 438: 120146, 2022 07 15.
Article in English | MEDLINE | ID: covidwho-1611870

ABSTRACT

BACKGROUND: Persistent cognitive symptoms have been reported following COVID-19 hospitalization. We investigated the relationship between demographics, social determinants of health (SDOH) and cognitive outcomes 6-months after hospitalization for COVID-19. METHODS: We analyzed 6-month follow-up data collected from a multi-center, prospective study of hospitalized COVID-19 patients. Demographic and SDOH variables (age, race/ethnicity, education, employment, health insurance status, median income, primary language, living arrangements, and pre-COVID disability) were compared between patients with normal versus abnormal telephone Montreal Cognitive Assessments (t-MOCA; scores<18/22). Multivariable logistic regression models were constructed to evaluate predictors of t-MoCA. RESULTS: Of 382 patients available for 6-month follow-up, 215 (56%) completed the t-MoCA (n = 109/215 [51%] had normal and n = 106/215 [49%] abnormal results). 14/215 (7%) patients had a prior history of dementia/cognitive impairment. Significant univariate predictors of abnormal t-MoCA included older age, ≤12 years of education, unemployment pre-COVID, Black race, and a pre-COVID history of cognitive impairment (all p < 0.05). In multivariable analyses, education ≤12 years (adjusted OR 5.21, 95%CI 2.25-12.09), Black race (aOR 5.54, 95%CI 2.25-13.66), and the interaction of baseline functional status and unemployment prior to hospitalization (aOR 3.98, 95%CI 1.23-12.92) were significantly associated with abnormal t-MoCA scores after adjusting for age, history of dementia, language, neurological complications, income and discharge disposition. CONCLUSIONS: Fewer years of education, Black race and unemployment with baseline disability were associated with abnormal t-MoCA scores 6-months post-hospitalization for COVID-19. These associations may be due to undiagnosed baseline cognitive dysfunction, implicit biases of the t-MoCA, other unmeasured SDOH or biological effects of SARS-CoV-2.


Subject(s)
COVID-19 , Cognitive Dysfunction , Dementia , COVID-19/complications , COVID-19/epidemiology , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/epidemiology , Cognitive Dysfunction/etiology , Dementia/complications , Hospitalization , Humans , Prospective Studies , SARS-CoV-2 , Social Determinants of Health
9.
J Neuroophthalmol ; 41(3): 356-361, 2021 09 01.
Article in English | MEDLINE | ID: covidwho-1367102

ABSTRACT

BACKGROUND: The novel coronavirus 2019 (COVID-19) pandemic has transformed health care. With the need to limit COVID-19 exposures, telemedicine has become an increasingly important format for clinical care. Compared with other fields, neuro-ophthalmology faces unique challenges, given its dependence on physical examination signs that are difficult to elicit outside the office setting. As such, it is imperative to understand both patient and provider experiences to continue to adapt the technology and tailor its application. The purpose of this study is to analyze both neuro-ophthalmology physician and patient satisfaction with virtual health visits during the time of the COVID-19 pandemic. METHODS: Across three institutions (NYU Langone Health, Indiana University Health, and Columbia University Medical Center), telemedicine surveys were administered to 159 patients. Neuro-ophthalmologists completed 157 surveys; each of these were linked to a single patient visit. Patient surveys consisted of 5 questions regarding visit preparation, satisfaction, challenges, and comfort. The physician survey included 4 questions that focused on ability to gather specific clinical information by history and examination. RESULTS: Among 159 patients, 104 (65.4%) reported that they were satisfied with the visit, and 149 (93.7%) indicated that they were comfortable asking questions. Sixty-eight (73.9%) patients found the instructions provided before the visit easy to understand. Potential areas for improvement noted by patients included more detailed preparation instructions and better technology (phone positioning, Internet connection, and software). More than 87% (137/157) of neuro-ophthalmologists surveyed reported having performed an examination that provided enough information for medical decision-making. Some areas of the neuro-ophthalmologic examination were reported to be easy to conduct (range of eye movements, visual acuity, Amsler grids, Ishihara color plates, and pupillary examination). Other components were more difficult (saccades, red desaturation, visual fields, convergence, oscillations, ocular alignment, and smooth pursuit); some were especially challenging (vestibulo-ocular reflex [VOR], VOR suppression, and optokinetic nystagmus). Clinicians noted that virtual health visits were limited by patient preparation, inability to perform certain parts of the examination (funduscopy and pupils), and technological issues. CONCLUSIONS: Among virtual neuro-ophthalmology visits evaluated, most offer patients with appointments that satisfy their needs. Most physicians in this cohort obtained adequate clinical information for decision-making. Even better technology and instructions may help improve aspects of virtual health visits.


Subject(s)
COVID-19/epidemiology , Eye Diseases/diagnosis , Ophthalmology/methods , Pandemics , Physicians/statistics & numerical data , Surveys and Questionnaires , Telemedicine/methods , Comorbidity , Eye Diseases/epidemiology , Humans , Retrospective Studies
10.
Front Aging Neurosci ; 13: 690383, 2021.
Article in English | MEDLINE | ID: covidwho-1344280

ABSTRACT

BACKGROUND/OBJECTIVES: Little is known regarding the prevalence and predictors of prolonged cognitive and psychological symptoms of COVID-19 among community-dwellers. We aimed to quantitatively measure self-reported metrics of fatigue, cognitive dysfunction, anxiety, depression, and sleep and identify factors associated with these metrics among United States residents with or without COVID-19. METHODS: We solicited 1000 adult United States residents for an online survey conducted February 3-5, 2021 utilizing a commercial crowdsourcing community research platform. The platform curates eligible participants to approximate United States demographics by age, sex, and race proportions. COVID-19 was diagnosed by laboratory testing and/or by exposure to a known positive contact with subsequent typical symptoms. Prolonged COVID-19 was self-reported and coded for those with symptoms ≥ 1 month following initial diagnosis. The primary outcomes were NIH PROMIS/Neuro-QoL short-form T-scores for fatigue, cognitive dysfunction, anxiety, depression, and sleep compared among those with prolonged COVID-19 symptoms, COVID-19 without prolonged symptoms and COVID-19 negative subjects. Multivariable backwards step-wise logistic regression models were constructed to predict abnormal Neuro-QoL metrics. RESULTS: Among 999 respondents, the average age was 45 years (range 18-84), 49% were male, 76 (7.6%) had a history of COVID-19 and 19/76 (25%) COVID-19 positive participants reported prolonged symptoms lasting a median of 4 months (range 1-13). Prolonged COVID-19 participants were more often younger, female, Hispanic, and had a history of depression/mood/thought disorder (all P < 0.05). They experienced significantly higher rates of unemployment and financial insecurity, and their symptoms created greater interference with work and household activities compared to other COVID-19 status groups (all P < 0.05). After adjusting for demographics, past medical history and stressor covariates in multivariable logistic regression analysis, COVID-19 status was independently predictive of worse Neuro-QoL cognitive dysfunction scores (adjusted OR 11.52, 95% CI 1.01-2.28, P = 0.047), but there were no significant differences in quantitative measures of anxiety, depression, fatigue, or sleep. CONCLUSION: Prolonged symptoms occurred in 25% of COVID-19 positive participants, and NeuroQoL cognitive dysfunction scores were significantly worse among COVID-19 positive subjects, even after accounting for demographic and stressor covariates. Fatigue, anxiety, depression, and sleep scores did not differ between COVID-19 positive and negative respondents.

12.
Clin Neurol Neurosurg ; 207: 106760, 2021 08.
Article in English | MEDLINE | ID: covidwho-1267627

ABSTRACT

OBJECTIVE: We reviewed the literature on cerebrospinal fluid (CSF) testing in patients with altered olfactory/gustatory function due to COVID-19 for evidence of viral neuroinvasion. METHODS: We performed a systematic review of Medline and Embase to identify publications that described at least one patient with COVID-19 who had altered olfactory/gustatory function and had CSF testing performed. The search ranged from December 1, 2019 to November 18, 2020. RESULTS: We identified 51 publications that described 70 patients who met inclusion criteria. Of 51 patients who had CSF SARS-CoV-2 PCR testing, 3 (6%) patients had positive results and 1 (2%) patient had indeterminate results. Cycle threshold (Ct; the number of amplification cycles required for the target gene to exceed the threshold, which is inversely related to viral load) was not provided for the patients with a positive PCR. The patient with indeterminate results had a Ct of 37 initially, then no evidence of SARS-CoV-2 RNA on repeat testing. Of 6 patients who had CSF SARS-CoV-2 antibody testing, 3 (50%) were positive. Testing to distinguish intrathecal antibody synthesis from transudation of antibodies to the CSF via breakdown of the blood-brain barrier was performed in 1/3 (33%) patients; this demonstrated antibody transmission to the CSF via transudation. CONCLUSION: Detection of SARS-CoV-2 in CSF via PCR or evaluation for intrathecal antibody synthesis appears to be rare in patients with altered olfactory/gustatory function. While pathology studies are needed, our review suggests it is unlikely that these symptoms are related to viral neuroinvasion.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/epidemiology , Olfaction Disorders/cerebrospinal fluid , Olfaction Disorders/epidemiology , Taste Disorders/cerebrospinal fluid , Taste Disorders/epidemiology , Biomarkers/cerebrospinal fluid , COVID-19/diagnosis , Humans , Olfaction Disorders/diagnosis , Taste Disorders/diagnosis
13.
J Neuroimaging ; 31(5): 826-848, 2021 09.
Article in English | MEDLINE | ID: covidwho-1262366

ABSTRACT

BACKGROUND AND PURPOSE: We reviewed the literature to evaluate cerebrospinal fluid (CSF) results from patients with coronavirus disease 2019 (COVID-19) who had neurological symptoms and had an MRI that showed (1) central nervous system (CNS) hyperintense lesions not attributed to ischemia and/or (2) leptomeningeal enhancement. We sought to determine if these findings were associated with a positive CSF severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) polymerase chain reaction (PCR). METHODS: We performed a systematic review of Medline and Embase from December 1, 2019 to November 18, 2020. CSF results were evaluated based on the presence/absence of (1) ≥ 1 CNS hyperintense lesion and (2) leptomeningeal enhancement. RESULTS: In 117 publications, we identified 193 patients with COVID-19 who had an MRI of the CNS and CSF testing. There were 125 (65%) patients with CNS hyperintense lesions. Patients with CNS hyperintense lesions were significantly more likely to have a positive CSF SARS-CoV-2 PCR (10% [9/87] vs. 0% [0/43], p = 0.029). Of 75 patients who had a contrast MRI, there were 20 (27%) patients who had leptomeningeal enhancement. Patients with leptomeningeal enhancement were significantly more likely to have a positive CSF SARS-CoV-2 PCR (25% [4/16] vs. 5% [2/42], p = 0.024). CONCLUSION: The presence of CNS hyperintense lesions or leptomeningeal enhancement on neuroimaging from patients with COVID-19 is associated with increased likelihood of a positive CSF SARS-CoV-2 PCR. However, a positive CSF SARS-CoV-2 PCR is uncommon in patients with these neuroimaging findings, suggesting they are often related to other etiologies, such as inflammation, hypoxia, or ischemia.


Subject(s)
COVID-19 , Nervous System Diseases , Brain , Humans , SARS-CoV-2 , Spinal Cord
14.
Seizure ; 89: 99-106, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1230773

ABSTRACT

We reviewed the literature on cerebrospinal fluid (CSF) studies in patients who had a seizure in the setting of COVID-19 infection to evaluate for evidence of viral neuroinvasion. We performed a systematic review of Medline and Embase to identify publications that reported one or more patients with COVID-19 who had a seizure and had CSF testing preformed. The search ranged from December 1st 2019 to November 18th 2020. We identified 56 publications which described 69 unique patients who met our inclusion criteria. Of the 54 patients whose past medical history was provided, 2 (4%) had epilepsy and 1 (2%) had a prior seizure in the setting of hyperglycemia, but the remaining 51 (94%) had no history of seizures. Seizure was the initial symptom of COVID-19 for 15 (22%) patients. There were 26 (40%) patients who developed status epilepticus. SARS-CoV-2 PCR testing was performed in the CSF for 45 patients; 6 (13%) had a positive CSF SARS-CoV-2 PCR, only 1 (17%) of whom had status epilepticus. The cycle thresholds were not reported. Evaluation for CSF SARS-CoV-2 antibodies (directly or indirectly, via testing for CSF oligoclonal bands or immunoglobulins) was performed in 26 patients, only 2 (8%) of whom had evidence of intrathecal antibody synthesis. Of the 11 patients who had CSF autoimmune antibody panels tested, 1 had NMDA antibodies and 1 had Caspr-2 antibodies. Detection of SARS-CoV-2 in the CSF of patients with seizures who have COVID-19 is uncommon. Our review suggests that seizures in this patient population are not likely due to direct viral invasion of the brain.


Subject(s)
COVID-19 , Status Epilepticus , Humans , SARS-CoV-2 , Seizures
15.
J Neurol Sci ; 426: 117486, 2021 Jul 15.
Article in English | MEDLINE | ID: covidwho-1225301

ABSTRACT

BACKGROUND: Little is known regarding long-term outcomes of patients hospitalized with COVID-19. METHODS: We conducted a prospective study of 6-month outcomes of hospitalized COVID-19 patients. Patients with new neurological complications during hospitalization who survived were propensity score-matched to COVID-19 survivors without neurological complications hospitalized during the same period. The primary 6-month outcome was multivariable ordinal analysis of the modified Rankin Scale(mRS) comparing patients with or without neurological complications. Secondary outcomes included: activities of daily living (ADLs;Barthel Index), telephone Montreal Cognitive Assessment and Neuro-QoL batteries for anxiety, depression, fatigue and sleep. RESULTS: Of 606 COVID-19 patients with neurological complications, 395 survived hospitalization and were matched to 395 controls; N = 196 neurological patients and N = 186 controls completed follow-up. Overall, 346/382 (91%) patients had at least one abnormal outcome: 56% had limited ADLs, 50% impaired cognition, 47% could not return to work and 62% scored worse than average on ≥1 Neuro-QoL scale (worse anxiety 46%, sleep 38%, fatigue 36%, and depression 25%). In multivariable analysis, patients with neurological complications had worse 6-month mRS (median 4 vs. 3 among controls, adjusted OR 1.98, 95%CI 1.23-3.48, P = 0.02), worse ADLs (aOR 0.38, 95%CI 0.29-0.74, P = 0.01) and were less likely to return to work than controls (41% versus 64%, P = 0.04). Cognitive and Neuro-QOL metrics were similar between groups. CONCLUSIONS: Abnormalities in functional outcomes, ADLs, anxiety, depression and sleep occurred in over 90% of patients 6-months after hospitalization for COVID-19. In multivariable analysis, patients with neurological complications during index hospitalization had significantly worse 6-month functional outcomes than those without.


Subject(s)
COVID-19 , Activities of Daily Living , Humans , Prospective Studies , Quality of Life , SARS-CoV-2
17.
Neurocrit Care ; 35(3): 693-706, 2021 12.
Article in English | MEDLINE | ID: covidwho-1135193

ABSTRACT

BACKGROUND: Toxic metabolic encephalopathy (TME) has been reported in 7-31% of hospitalized patients with coronavirus disease 2019 (COVID-19); however, some reports include sedation-related delirium and few data exist on the etiology of TME. We aimed to identify the prevalence, etiologies, and mortality rates associated with TME in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-positive patients. METHODS: We conducted a retrospective, multicenter, observational cohort study among patients with reverse transcriptase-polymerase chain reaction-confirmed SARS-CoV-2 infection hospitalized at four New York City hospitals in the same health network between March 1, 2020, and May 20, 2020. TME was diagnosed in patients with altered mental status off sedation or after an adequate sedation washout. Patients with structural brain disease, seizures, or primary neurological diagnoses were excluded. The coprimary outcomes were the prevalence of TME stratified by etiology and in-hospital mortality (excluding comfort care only patients) assessed by using a multivariable time-dependent Cox proportional hazards models with adjustment for age, race, sex, intubation, intensive care unit requirement, Sequential Organ Failure Assessment scores, hospital location, and date of admission. RESULTS: Among 4491 patients with COVID-19, 559 (12%) were diagnosed with TME, of whom 435 of 559 (78%) developed encephalopathy immediately prior to hospital admission. The most common etiologies were septic encephalopathy (n = 247 of 559 [62%]), hypoxic-ischemic encephalopathy (HIE) (n = 331 of 559 [59%]), and uremia (n = 156 of 559 [28%]). Multiple etiologies were present in 435 (78%) patients. Compared with those without TME (n = 3932), patients with TME were older (76 vs. 62 years), had dementia (27% vs. 3%) or psychiatric history (20% vs. 10%), were more often intubated (37% vs. 20%), had a longer hospital length of stay (7.9 vs. 6.0 days), and were less often discharged home (25% vs. 66% [all P < 0.001]). Excluding comfort care patients (n = 267 of 4491 [6%]) and after adjustment for confounders, TME remained associated with increased risk of in-hospital death (n = 128 of 425 [30%] patients with TME died, compared with n = 600 of 3799 [16%] patients without TME; adjusted hazard ratio [aHR] 1.24, 95% confidence interval [CI] 1.02-1.52, P = 0.031), and TME due to hypoxemia conferred the highest risk (n = 97 of 233 [42%] patients with HIE died, compared with n = 631 of 3991 [16%] patients without HIE; aHR 1.56, 95% CI 1.21-2.00, P = 0.001). CONCLUSIONS: TME occurred in one in eight hospitalized patients with COVID-19, was typically multifactorial, and was most often due to hypoxemia, sepsis, and uremia. After we adjustment for confounding factors, TME was associated with a 24% increased risk of in-hospital mortality.


Subject(s)
Brain Diseases, Metabolic , Brain Diseases , COVID-19 , Hospital Mortality , Hospitalization , Humans , Retrospective Studies , SARS-CoV-2
18.
J Neurol Sci ; 421: 117316, 2021 02 15.
Article in English | MEDLINE | ID: covidwho-1014639

ABSTRACT

OBJECTIVE: We sought to review the literature on cerebrospinal fluid (CSF) testing in patients with COVID-19 for evidence of viral neuroinvasion by SARS-CoV-2. METHODS: We performed a systematic review of Medline and Embase between December 1, 2019 and November 18, 2020 to identify case reports or series of patients who had COVID-19 diagnosed based on positive SARS-CoV-2 polymerase chain reaction (PCR) or serologic testing and had CSF testing due to a neurologic symptom. RESULTS: We identified 242 relevant documents which included 430 patients with COVID-19 who had acute neurological symptoms prompting CSF testing. Of those, 321 (75%) patients had symptoms that localized to the central nervous system (CNS). Of 304 patients whose CSF was tested for SARS-CoV-2 PCR, there were 17 (6%) whose test was positive, all of whom had symptoms that localized to the central nervous system (CNS). The majority (13/17, 76%) of these patients were admitted to the hospital because of neurological symptoms. Of 58 patients whose CSF was tested for SARS-CoV-2 antibody, 7 (12%) had positive antibodies with evidence of intrathecal synthesis, all of whom had symptoms that localized to the CNS. Of 132 patients who had oligoclonal bands evaluated, 3 (2%) had evidence of intrathecal antibody synthesis. Of 77 patients tested for autoimmune antibodies in the CSF, 4 (5%) had positive findings. CONCLUSION: Detection of SARS-CoV-2 in CSF via PCR or evaluation for intrathecal antibody synthesis appears to be rare. Most neurological complications associated with SARS- CoV-2 are unlikely to be related to direct viral neuroinvasion.


Subject(s)
COVID-19/cerebrospinal fluid , COVID-19/diagnosis , Nervous System Diseases/cerebrospinal fluid , Nervous System Diseases/diagnosis , SARS-CoV-2/metabolism , Biomarkers/cerebrospinal fluid , COVID-19/complications , Humans , Nervous System Diseases/etiology , SARS-CoV-2/isolation & purification
19.
Res Sq ; 2020 Oct 26.
Article in English | MEDLINE | ID: covidwho-903183

ABSTRACT

Background: Zinc impairs replication of RNA viruses such as SARS-CoV-1, and may be effective against SARS-CoV-2. However, to achieve adequate intracellular zinc levels, administration with an ionophore, which increases intracellular zinc levels, may be necessary. We evaluated the impact of zinc with an ionophore (Zn+ionophore) on COVID-19 in-hospital mortality rates. Methods: A multicenter cohort study was conducted of 3,473 adult hospitalized patients with reverse-transcriptase-polymerase-chain-reaction (RT-PCR) positive SARS-CoV-2 infection admitted to four New York City hospitals between March 10 through May 20, 2020. Exclusion criteria were: death or discharge within 24h, comfort-care status, clinical trial enrollment, treatment with an IL-6 inhibitor or remdesivir. Patients who received Zn+ionophore were compared to patients who did not using multivariable time-dependent cox proportional hazards models for time to in-hospital death adjusting for confounders including age, sex, race, BMI, diabetes, week of admission, hospital location, sequential organ failure assessment (SOFA) score, intubation, acute renal failure, neurological events, treatment with corticosteroids, azithromycin or lopinavir/ritonavir and the propensity score of receiving Zn+ionophore. A sensitivity analysis was performed using a propensity score-matched cohort of patients who did or did not receive Zn+ionophore matched by age, sex and ventilator status. Results: Among 3,473 patients (median age 64, 1947 [56%] male, 522 [15%] ventilated, 545[16%] died), 1,006 (29%) received Zn+ionophore. Zn+ionophore was associated with a 24% reduced risk of in-hospital mortality (12% of those who received Zn+ionophore died versus 17% who did not; adjusted Hazard Ratio [aHR] 0.76, 95% CI 0.60-0.96, P=0.023). More patients who received Zn+ionophore were discharged home (72% Zn+ionophore vs 67% no Zn+ionophore, P=0.003) Neither Zn nor the ionophore alone were associated with decreased mortality rates. Propensity score-matched sensitivity analysis (N=1356) validated these results (Zn+ionophore aHR for mortality 0.63, 95%CI 0.44-0.91, P=0.015). There were no significant interactions for Zn+ionophore with other COVID-19 specific medications. Conclusions: Zinc with an ionophore was associated with increased rates of discharge home and a 24% reduced risk of in-hospital mortality among COVID-19 patients, while neither zinc alone nor the ionophore alone reduced mortality. Further randomized trials are warranted.

20.
Indian Journal of Pediatrics ; 87(7):554-554, 2020.
Article in English | MEDLINE | ID: covidwho-657575

ABSTRACT

OBJECTIVE: To outline changes made to a neurology residency program in response to coronavirus disease 2019 (COVID-19). METHODS: In early March 2020, the first cases of COVID-19 were announced in the United States. New York City quickly became the epicenter of a global pandemic, and our training program needed to rapidly adapt to the increasing number of inpatient cases while being mindful of protecting providers and continuing education. Many of these changes unfolded over days, including removing residents from outpatient services, minimizing the number of residents on inpatient services, deploying residents to medicine services and medical intensive care units, converting continuity clinic patient visits to virtual options, transforming didactics to online platforms only, and maintaining connectedness in an era of social distancing. We have been able to accomplish this through daily virtual meetings among leadership, faculty, and residents. RESULTS: Over time, our program has successfully rolled out initiatives to service the growing number of COVID-related inpatients while maintaining neurologic care for those in need and continuing our neurologic education curriculum. CONCLUSION: It has been necessary and feasible for our residency training program to undergo rapid structural changes to adapt to a medical crisis. The key ingredients in doing this successfully have been flexibility and teamwork. We suspect that many of the implemented changes will persist long after the COVID-19 crisis has passed and will change the approach to neurologic and medical training.

SELECTION OF CITATIONS
SEARCH DETAIL